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Overview

• Motivation: Address the need for propulsion

• Identify Design Constraints

• Requirements

• Current Propulsion Technologies

– Electric 

– Chemical

– Conventional solar thermal

• Introduce Proposed Concept

– Overview

– Workable engineering design

• Heat exchangers (solar array, propellant-tank, radiator)

• Concept integration 

• Initial Propulsion Analysis

• Conclusion
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http://earthobservatory.nasa.gov/Features/OrbitsCatalog/page3.php

Motivation

• Maintain orbit during lifetime

• Orbital changes (includes 

de-orbiting at the end of 

mission)
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Ley, Wilfried., Wittmann, Klaus., Hallmann, Willi., Handbook of Space Technology, WILEY

20095http://i.i.com.com/cnwk.1d/i/tim//2010/07/15/ thermosphere.jpg



Design Constraints
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• Size

• 1-U

• Mass

• Pico-satellites < 1 kg

• Nano-Satellites 1–50 kg

• Power

• 1 W/kg

• Supporting technologies

• Launch mechanisms- impose 

form-factor constraint

• Operational 

• LEO

http://pynoticias.blogspot.com/2012/08/p-pod-o-

lancador-de-cubesats.html



Design Requirements
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• Size

• Be able to fit in 1-U

• Mass

• Low mass

• Power

• Low power

• Supporting technologies

• Use current supporting 

technologies

• Operational 

• Use available 

resources

http://pynoticias.blogspot.com/2012/08/p-pod-o-

lancador-de-cubesats.html



Current Propulsion Technologies
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Miniature ION thrusters



Current Propulsion Technologies
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Chemical thrusters

http://www.techpedia.in/award/project-detail/Performance-Enhancement-of-Microthruster-using-Nano-engineered-MEMS-Structure-for/1673



Current Propulsion Technologies

TFAWS 2017 – August 21-25, 2017 8

Conventional Solar Thermal thrusters

http://mech-

hm.eng.hokudai.ac.jp/~spacesystem/study_e.html

http://www.ecofriend.com/green-satellite-engines-from-pentagon-by-2008.html



Proposed  Solar Thermal Concept 

• Concept revolves around moving thermal energy (form 

of heat) from the solar array to the propellant

• Plan on accomplishing this with a series of heat 

exchangers
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Solar Array Propellant

Radiator



Thermal Engineering Design

• Solar array always orientated facing the sun

• Propellant tank facing the planet

• At the heart of the design is understanding the temperature 

behavior of the solar cells in LEO
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Kim, H-K., Lee, J-J., Hyun, B-S., Han, C-Y.,  ‘Thermal Design of the Solar Array in a Low Earth Orbit Satellite by Analytical and Numerical Methods’, 

Korea Aerospace Research Institute (KARI)

Look at two major characteristics: (1) Absorptivity, and (2) Emissivity

Solar Cells Surface Finishes 
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Proposed Architecture 

• Consist of a single phase fluid-filled heat-exchanger pipe in contact 

with the solar array and a thermal insulator.
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Figure 10. (a) Solar array heat pipe arrangement. (b) Side view (c) Isometric view 

 

Solar-Array-Heat-Exchanger



Proposed Architecture 

• Single-phase fluid-filled heat-exchanger pipe exposed to space.
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Radiator -Heat-Exchanger-Design

  
Figure 12. (a) Radiator side view (b) Radiator top view 

 



Proposed Architecture 

• Consist of a fluid-filled heat-exchanger pipe immersed in the 

propellant.
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Propellant-Tank-Heat-Exchanger

  
 

Figure 11. (a) Cross-sectional isometric view (b) Cross-sectional side view (a) Isometric view 

 



Pump

Proposed Architecture 

• Consist of a single phase fluid-filled heat-exchanger pipes and pump.
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Piping-Design



Assembled Model

• Heat-

Exchangers

• Associated 

piping 

• Pump
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Anamation_03.wmv


Propulsion Analysis

• Using established relations 

for exhaust velocity, thrust 

force and specific impulse.

• Compare, using thrust force 

and specific impulse, 

various technologies under 

development for small 

satellite (Cube-Sat) 

propulsion.

• Compare concentrated solar 

thermal with the proposed 

heat exchanger concept 

(using water, ammonia, hydrogen and 

hydrazine as propellant choices)
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Propulsion Analysis – Thrust Force

• Mass flow rate unknown 
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14Ketsdever, Andrew, and David B. Scharfe. "A Review of High Thrust, High Delta-V Options for Microsatellite Missions." (2009



Propulsion Analysis – Specific Impulse

• Mass flow rate unknown 
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14Ketsdever, Andrew, and David B. Scharfe. "A Review of High Thrust, High Delta-V Options for Microsatellite Missions." (2009



Propulsion Analysis – Thrust Force

• Compare solar thermal concentrator (200 – 400 deg C) with 

solar thermal heat exchanger (50 – 110 deg C) concepts

• Use same mass flow rate and propellants
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Propulsion Analysis – Specific Impulse

• Compare solar thermal concentrator (200 – 400 deg C) with 

solar thermal heat exchanger (50 – 110 deg C) concepts

• Use same mass flow rate and propellants
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Proposed Nozzle Exit Placement
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Conclusion

• We are proposing a new 

concept when looking at solar 

thermal propulsion.

• The proposed heat exchanger 

solar thermal concept 

compares well with other 

technologies under 

consideration.

• We observe from initial analysis 

that we can recover 

approximately 70 – 75% of 

thrust force and specific impulse 

values. 

• Concept warrants further 

investigations. 
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Next Phase of Study

• Continued development of computational models (with a 

focus on the thermal heat exchanger models)

• Do in initial experimental proof of concept.
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